2019/10/18 Assessing the Generalizability of code2vec Token Embeddings

2019-10-18T14:00:00Z session topic is Assessing the Generalizability of code2vec Token Embeddings. Here is the abstract of the paper:

Many Natural Language Processing (NLP) tasks, such as sentiment analysis or syntactic parsing, have benefited from the development of word embedding models. In particular, regardless of the training algorithms, the learned embeddings have often been shown to be generalizable to different NLP tasks. In contrast, despite recent momentum on word embeddings for source code, the literature lacks evidence of their generalizability beyond the example task they have been trained for.
In this experience paper, we identify 3 potential downstream tasks, namely code comments generation, code authorship identification, and code clones detection, that source code token embed- ding models can be applied to. We empirically assess a recently proposed code token embedding model, namely code2vec’s token embeddings. Code2vec was trained on the task of predicting method names, and while there is potential for using the vectors it learns on other tasks, it has not been explored in literature. Therefore, we fill this gap by focusing on its generalizability for the tasks we have identified. Eventually, we show that source code token embeddings cannot be readily leveraged for the downstream tasks. Our experiments even show that our attempts to use them do not result in any improvements over less sophisticated methods. We call for more research into effective and general use of code embeddings.

:writing_hand: We take notes and prepare the discussion in a public GDoc, you are very welcome to ask questions or share your thoughts in it

:clock4: The session lasts for one hour between 2019-10-18T14:00:00Z and 2019-10-18T15:00:00Z

:world_map: The reading club happens on-line on zoom or in source{d} office in Madrid

:information_source: For more details, see our repository on GitHub

Thanks for voting! We’ll study Assessing the Generalizability of code2vec Token Embeddings